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Good afternoon,

It is my pleasure to present to you, Data Intensive Computing, a promising new direction in
computer architecture.

Although Data Intensive Computing is not an approved program and no BAA is planned at this time,
I am interested in receiving feedback concerning the concepts I will share with you this afternoon
and mechanisms through which they could be realized.
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I’d like to begin with a little motivation. This figure displays trend lines representing the relative
performance growth of microprocessors and DRAM memories. Microprocessors are doubling in
speed every 18 months. DRAMs, on the other hand, are increasing in speed by only 7% per year.
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How have computer architects responded to this problem? On the left we have a trace of the memory
accessed by a commonly used benchmark. Notice that at any point in time, only a small subset of the
memory is being accessed. Furthermore, the program advances through its data at a stride of one.
Therefore, a hierarchy of small, fast, cache memories provides the user with the illusion of a large,
flat main memory.
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DATA-STARVEDDATA-STARVED
DEFENSE APPLICATIONSDEFENSE APPLICATIONS
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Many Defense Applications Have Large Data Sets That
Are Accessed Non-Contiguously
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Unfortunately, many important Defense applications have neither small working sets nor contiguous
access patterns; the same is true of a number of commercial object-oriented systems and databases.
Consider the example on the left. This is the trace of the memory access pattern generated by a
relational database. On the right is a list of applications critical to Defense that are also starved for
data by the modern virtual memory hierarchy and thus perform at a small fraction of the potential
power of their RISC hosts.
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Traditional:

New Program:

• Multiple COTS CPUs

Data Intensive Computing System:  Integrate processing and
communication into memory image of standard CPU

Data Intensive Computing System:  Integrate processing and
communication into memory image of standard CPU
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MISSION CRITICALMISSION CRITICAL
APPLICATION SOLUTIONSAPPLICATION SOLUTIONS

• Relatively
inexpensive

• Preserves S/W
investment

• Low risk integration

• Slow
• Big

• Fast
• Small

• Special Purpose
Devices (SPDs)

• Expensive
• Maintenance liability
• Abandons software

investment
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If you need to increase the memory bandwidth delivered to your application, what are the
alternatives?

You can buy multiple COTS CPUs if the application scales. However, the resulting systems tend to
be large and slow.

Alternatively, you can produce a custom solution at great cost in both hardware and software. This
becomes a long-term maintenance liability.

We propose a new approach that allows the application to directly control its memory and
communication assets.
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DATA INTENSIVE GOALDATA INTENSIVE GOAL

New Memory Architecture to Enable Defense
Applications to Overcome Limitations of the
VM Hierarchy.
n Incorporate it into a new computing system.

nDemonstrate its effectiveness.

Metric:  Two Orders-of-Magnitude Faster
Than Contemporary VM Systems of
Comparable Cost.
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The goal of Data Intensive Computing is to develop a new memory architecture that enables
important Defense applications to overcome the limitations of the virtual memory hierarchy. It
should be possible to demonstrate that these applications will run two orders-of-magnitude faster on
the new architecture than on contemporary virtual memory systems.
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Rapidly
Growing Need

Opportunity
Arising

• Memory bottleneck severely
constrains performance

• Increasing mismatch in
processing/memory speed

• Bandwidth per bit is plummeting

• Integrate processor & DRAM on
same die

• Fertile ground as CPU and system
research converging

• Memory dominates cost of system
(~90%)

WHY NOW?WHY NOW?
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This is the perfect time to address this problem. We’ve already discussed the increasing mismatch in
processing and memory speeds. This is creating a severe constraint on performance. In fact, DRAM
density increases faster than I/O bandwidth, reducing the bandwidth per bit delivered to an
application.

As the magnitude of the problem grows, so does the opportunity. It is now possible to integrate
processors and DRAM on the same die. Furthermore, in high-end workstations, memory dominates
the total cost already, so this is where the leverage is.
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EXAMPLE OF PROCESSOREXAMPLE OF PROCESSOR
AND MEMORY CHIPAND MEMORY CHIP
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Here is an example of a processor fabricated on the same die as its DRAM memory. IBM and other
memory vendors also have the technology to do this.
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TECHNICAL CHALLENGESTECHNICAL CHALLENGES

Maximizing Memory Bandwidth
Processors within memory manipulate data

Optimizing Data Movement
Applications manage memory hierarchy so data
movement is tailored to specific needs

Split Basing
Integrate network and processor architecture
minimizing access time to remote data
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We see at least three opportunities for technical innovation:

1. Maximize the data bandwidth delivered to an application. This can imply moving at least part of
the application to its data so that it can be processed.

2. Allow applications to choreograph the movements of data within the memory hierarchy, so that
their specific needs are met.

3. For applications that involve multiple computers, minimize the latency to access remote data.
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This picture represents an approach to increase the effective memory bandwidth delivered to an
application. Processors are fabricated on the same die as the DRAM that comprises the main
memory of the system. Application instructions can then either execute in the host CPU, execute in
the memory, or both.
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APPLICATION MANAGEMENTAPPLICATION MANAGEMENT
OF MEMORY HIERARCHYOF MEMORY HIERARCHY

n Optimize data movement
n Increase cache utilization and

effective memory bandwidth

Allow Applications
to Manage the
Memory Hierarchy
So Data Movement
Is Tailored to Their
Specific Needs
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Many Defense applications have non-unit or even pseudo-random memory access patterns. These
make cache a liability in that long cache lines and memory bandwidth are grossly under utilized. We
could improve this by allowing applications to dictate the placement and movement of data
throughout the memory hierarchy.
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SPLIT-BASING ARCHITECTURESPLIT-BASING ARCHITECTURE
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Integrate Remote Network Access Into
the Processor Architecture

n Eliminate software overheads to
access remote data

n Fetch remote data in under 1µsec
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RESULTS QUANTIFIEDRESULTS QUANTIFIED

Bandwidth  

Contiguous  282 MB/s 61400 MB/s 218X $13,935K
to Application

Random 70 MB/s 1440 MB/s 21X $1,317K
 to CPU

Random  — 3840 MB/s 55X $3,511K
 at Memory

HP PA8000
($64K)

Data Intensive
Computing

System (~$80K)
Cost to
Match

Performance
Improvement
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To better understand the impact of the program, this table compares an existing workstation to one
enhanced with Data-Intensive technology. The new system is assumed to have 16 “processor in
memory” chips on each of four memory banks.
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RESULTS QUANTIFIED RESULTS QUANTIFIED (cont.)(cont.)

Compress 3.6 sec 0.016 sec 225X $13,935K
1GB

OODB Ad-Hoc 1.8 sec 0.008 sec 225X $13,935K
Query

Sparse 8.3 MFlops 120 MFlops 15X $960K
Ax=y

HP PA8000
($64K)

Data Intensive
Computing

System (~$80K)
Cost to
Match

Performance
Improvement
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Here we examine the impact on some common applications:

  • Many applications leverage dynamic management of storage that has to be compressed
periodically.

  • In OODBs one is often confronted with the need to search for data that cannot be found on the
index trees.

  • Sparse matrix multiplication is the key to many large scientific and engineering applications.
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WHAT IS ENABLED?WHAT IS ENABLED?

n Searching Large Object-Oriented Databases Will
Be Two Orders-of-Magnitude Faster

n Object Oriented "Methods" Performed in Memory,
With Lower Latency and Higher Bandwidth Access
to Their Data

n Utilization of High-Speed Memory Will Increase
16-Fold for Large Applications With Non-
Contiguous Data Access Patterns
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Data-Intensive Computing could enable a substantial increase in performance of data-starved
applications. Object-oriented databases are a prime example. By searching and sorting without the
need to move pointers and indices all the way up the memory hierarchy, we could achieve orders-of-
magnitude in improvement. Object-oriented methods could execute in-place, reducing memory
traffic and dramatically increasing performance. In addition, allowing applications to choreograph
data movement will maximize the utilization of precious cache and memory bandwidth.
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